Простейшие свойства колец. Кольца: определение, свойства, примеры Кольцо рациональных чисел является полем

Fsb4000 писал(а):

2. а)делимая абелева группа не имеет максимальных подгрупп

Думаю, хватит уже полных решений, да? Модераторы ведь зароют за то, что я Вам уже две задачи полностью расписал!!! Посему, чтобы их не злить, ограничимся идеями.

Ниже мы везде считаем, что натуральный ряд начинается с единицы.

Предположите, что --- делимая группа и --- максимальная подгруппа в . Рассмотрите

Докажите, что --- подгруппа в , содержащая . В силу максимальности возможны только два случая: или .

Рассмотрите каждый из случаев по отдельности и придите к противоречию. В случае возьмите и докажите, что

есть собственная подгруппа в , содержащая и не равная . В случае зафиксируйте и , такие что и покажите, что

является собственной подгруппой в , содержащей и не совпадающей с .

Добавлено спустя 10 минут 17 секунд:

Fsb4000 писал(а):

б) привести примеры делимых абелевых групп,могут ли они быть конечными?

Самый простой пример --- это . Ну или , --- что Вам больше нравится.

Насчёт конечности... конечно же делимая группа не может быть конечной (за исключением тривиального случая, когда группа состоит из одного нуля). Предположите, что --- конечная группа. Докажите, что для некоторого и всех . Потом возьмите такое и узрите, что уравнение неразрешимо при ненулевом .

Добавлено спустя 9 минут 56 секунд:

Fsb4000 писал(а):

4. Построить пример коммутативного и ассоциативного кольца R ()(), в котором нет максимальных идеалов.

Возьмите абелеву группу . Покажите, что она делимая. Умножение задайте следующим образом:

Покажите, что для выполняется всё, что надо.

Упс!.. А ведь ошибся я тут, похоже. Максимальный идеал есть, он равен . Н-да, надо ещё подумать... Но не буду я сейчас ничего думать, а поеду лучше на работу, в универ. Надо же Вам хоть что-то для самостоятельного решения оставить!

Добавлено спустя 10 минут 29 секунд:

Fsb4000 писал(а):

1.Доказать что произвольное кольцо с единицей содержит максимальный идеал.

по решению: 1. По лемме Цорна выберем минимальный положительный элемент, он и будет порождающим идеал.

Ну... не знаю, что Вы там за минимальный положительный элемент такой придумали. По моему, это полная чушь. Какой Вы там в произвольном кольце "положительный элемент" найдёте, если в этом кольце порядок не задан и непонятно, что там "положительное", а что "отрицательное"...

Но насчёт того, что надо применять лемму Цорна --- это правильная идея. Только применять её надо к множеству собственных идеалов кольца. Берёте это множество, упорядочиваете его обычным отношением включения и показываете, что данное упорядочивание индуктивно. Потом, по лемме Цорна, заключаете, что в этом множестве есть максимальный элемент. Этот максимальный элемент и будет максимальным идеалом!

Когда будете показывать индуктивность, то в качестве верхней грани для цепи собственных идеалов берите их объединение. Оно тоже будет идеалом, а собственным оно окажется потому, что единица в него не войдёт. И вот, кстати, в кольце без единицы доказательство через лемму Цорна не проходит, а всё дело именно в этом моменте

Добавлено спустя 34 минуты 54 секунды:

Alexiii писал(а):

Любое кольцо по определению имеет единицу,так что немыслимо писать "кольцо с единицей". Любое кольцо само по себе идеал кольца и притом,очевидно,максимальный...

Нас учили, что наличие единицы в определение кольца не входит. Так что произвольное кольцо не обязано содержать единицу, а если она в нём всё-таки есть, то сказать про такое кольцо, что оно является "кольцом с единицей", более чем уместно!

Думаю, что порывшись в библиотеке, я найду кучу весьма солидных учебников по алгебре, которые подтверждают мою точку зрения. И в матэнциклопедии написано, что кольцо не обязано единицу иметь. Так что всё в условии задачи у автора темы правильно, нечего на него гнать!

Максимальным идеалом кольца, по определению , называется идеал, максимальный по включению среди собственных идеалов . Об этом не то что во многих, а просто во всех учебниках по алгебре написано, в которых теория колец присутствует. Так что насчёт максимальности у Вас ещё один гон совершенно не по теме!

Добавлено спустя 6 минут 5 секунд:

Alexiii писал(а):

Вообще,как я понял из ваших комментов, "кольца с единицией" пишут только для того,чтобы исключить одноэлементный случай.

Совершенно неправильно поняли! "Кольца с единицей" пишут для того, чтобы обозначить наличие единицы в кольце

А колец без единицы полно. К примеру, множество чётных целых чисел с обычными сложением и умножением образуют такое кольцо.


ОПРЕДЕЛЕНИЕ И ПРИМЕРЫ ГРУППЫ.

Опр1 .Пусть G не пустое множество элементов произвольной природы. G называется группой

1) На множестве G задана бао °.

2) бао ° ассоциативна.

3) Существует нейтральный элемент nÎG.

4) Для любого элемента из G симметричный ему элемент всегда существует и принадлежит такжеG.

Пример. Множество Z – чисел с операцией +.

Опр2 .Группа называется абелевой , если она коммутативна относительно заданной бао °.

Примеры групп:

1) Z,R,Q «+» (Z+)

Простейшие свойства групп

В группе существует единственный нейтральный элемент

В группе для каждого элемента существует единственный симметричный ему элемент

Пусть G - группа с бао °, тогда уравнения вида:

a°x=b и x°a=b (1) - разрешимы и имеют единственное решение.

Доказательство . Рассмотрим уравнения (1) относительно x. Очевидно, что для а $! а". Так как операция ° - ассоциативна, то очевидно x=b°a" - единственное решение.

34. ЧЕТНОСТЬ ПОДСТАНОВКИ*

Определение 1 . Подстановка называется четной , если она разлагается в произведение четного числа транспозиций, и нечетная в противном случае.

Предложение 1 .Подстановка

Является четной <=> - четная перестановка. Следовательно, количество четных подстановок

из n чисел равно n!\2.

Предложение 2 . Подстановки f и f - 1 имеют один характер четности.

> Достаточно проверить, что если - произведение транспозиций, то <

Пример:

ПОДГРУППА. КРИТЕРИЙ ПОДГРУППЫ.

Опр. Пусть G - группа c бао ° и не пустое подмножество HÌG, тогда H называют подгруппой группы G, если H -подгруппа относительно бао° (т.е. ° - бао на Н. И Н с этой операцией группа).

Теорема (критерий подгруппы). Пусть G - группа относительно операции°, ƹHÎG. H является подгруппой <=> "h 1 ,h 2 ÎH выполняется условие h 1 °h 2 "ÎH (где h 2 " - симметричный элемент к h 2).

Док-во. =>: Пусть H - подгруппа (нужно доказать, что h 1 °h 2 "ÎH). Возьмем h 1 ,h 2 ÎH, тогда h 2 "ÎH и h 1 °h" 2 ÎH (так как h" 2 - симметричный элемент к h 2).

<=: (надо доказать, что H - подгруппа).



Раз H¹Æ , то там есть хотя бы один элемент. Возьмем hÎH, n=h°h"ÎH, т.е. нейтральный элемент nÎH. В качестве h 1 берем n, а в качестве h 2 возьмём h тогда h"ÎH Þ " hÎH симметричный элемент к h также принадлежит H.

Докажем, что композиция любых элементов из Н принадлежит Н.

Возьмём h 1 , а в качестве h 2 возьмём h" 2 Þ h 1 °(h 2 ") " ÎH, Þ h 1 °h 2 ÎH.

Пример. G=S n , n>2, α - некоторый элемент из Х={1,…,n}. В качестве H возьмём не пустое множество H= S α n ={fÎ S n ,f(α)=α}, при действии отображения из S α n α остаётся на месте. Проверяем по критерию. Возьмём любые h 1 ,h 2 ÎH. Произведение h 1 . h 2 "ÎH, т.е H - подгруппа, которая называется стационарной подгруппой элемента α.

КОЛЬЦО, ПОЛЕ. ПРИМЕРЫ.

Опр. Пусть К непустое множество с двумя алгебраическими операциями: сложением и умножением. К называется кольцом , если выполняются следующие условия:

1) К- абелевагруппа(коммутативна относительно заданной бао °) относительно сложения;

2) умножение ассоциативно;

3) умножение дистрибутивно относительно сложения().

Если умножение коммутативно, то К называют коммутативным кольцом . Если относительно умножения есть нейтральный элемент, то К называют кольцом с единицей .

Примеры.

1)Множество Z целых чисел образует кольцо относительно обычных операций сложения и умножения. Это кольцо коммутативно, ассоциативно и обладает единицей.

2) Множества Q рациональных чисел и R действительных чисел являются полями

относительно обычных операций сложения и умножения чисел.

Простейшие свойства колец.

1. Так как К абелева группа относительно сложения, то на К переносятся простейшие свойства групп.

2. Умножение дистрибутивно относительно разности: a(b-c)=ab-ac.

Доказательство. Т.к. ab-ac+ac=ab и a(b-c)+ac=a((b-c)+c)=a(b-c+c)=ab, то a(b-c)=ab-ac.

3. В кольце могут быть делители нуля, т.е. ab=0, но отсюда не следует,что a=0 b=0.

Например, в кольце матриц размера 2´2, существуют элементы не равные нулю такие, что их произведение будет нуль: ,где - играет роль нулевого элемента.

4. a·0=0·а=0.

Доказательство. Пусть 0=b-b. Тогда a(b-b)=ab-ab=0. Аналогично 0·а=0.

5. a(-b)=(-a)·b=-ab.

Доказательство: a(-b)+ab=a((-b)+b)=a·0=0.

6. Если в кольце К существует единица и оно состоит более, чем из одного элемента, то единица не равна нулю, где 1─ нейтральный элемент при умножении; 0 ─ нейтральный элемент при сложении.

7. Пусть К кольцо с единицей, тогда множество обратимых элементов кольца образуют группу относительно умножения, которую называют мультипликативной группой кольца K и обозначают K* .

Опр. Коммутативное кольцо с единицей, содержащее не менее двух элементов, в котором любой отличный от нуля элемент обратим, называется полем .

Простейшие свойства поля

1. Т.к. поле - кольцо, то все свойства колец переносятся и на поле.

2. В поле нет делителей нуля,т.е. если ab=0 ,то a=0 или b=0.

Доказательство.

Если a¹0 ,то $ a -1 . Рассмотрим a -1 (ab)=(a -1 a)b=0 , а если a¹0 ,то b=0, аналогично если b¹0

3. Уравнение вида a´x=b, a¹0, b – любое, в поле имеет единственное решение x= a -1 b, или х=b/a.

Решение этого уравнения называется частным.

Примеры. 1)PÌC, P - числовое поле. 2)P={0;1};

Определение 4.1.1. Кольцо (K , +, ) – это алгебраическая система с непустым множеством K и двумя бинарными алгебраическими операциями на нем, которые будем называть сложением и умножением . Кольцо является абелевой аддитивной группой, а умножение и сложение связаны законами дистрибутивности: (a + b )  c = a c + b c и с  (a + b ) = c a + c b для произвольных a , b , c K .

Пример 4.1.1. Приведем примеры колец.

1. (Z , +, ), (Q , +, ), (R , +, ), (C , +, ) – соответственно кольца целых, рациональных, вещественных и комплексных чисел с обычными операциями сложения и умножения. Данные кольца называются числовыми .

2. (Z / n Z , +, ) – кольцо классов вычетов по модулю n N с операциями сложения и умножения.

3. Множество M n (K ) всех квадратных матриц фиксированного порядка n N с коэффициентами из кольца (K , +, ) с операциями матричного сложения и умножения. В частности, K может быть равно Z , Q , R , C или Z /n Z приn N .

4. Множество всех вещественных функций, определенных на фиксированном интервале (a ; b ) вещественной числовой оси, с обычными операциями сложения и умножения функций.

5. Множество полиномов (многочленов) K [x ] с коэффициентами из кольца (K , +, ) от одной переменной x с естественными операциями сложения и умножения полиномов. В частности, кольца полиномов Z [x ], Q [x ], R [x ], C [x ], Z /n Z [x ] приn N .

6. Кольцо векторов (V 3 (R ), +, ) c операциями сложения и векторного умножения.

7. Кольцо ({0}, +, ) с операциями сложения и умножения: 0 + 0 = 0, 0  0 = = 0.

Определение 4.1.2. Различают конечные и бесконечные кольца (по числу элементов множества K ), но основная классификация ведется по свойствам умножения. Различают ассоциативные кольца, когда операция умножения ассоциативна (пункты 1–5, 7 примера 4.1.1) и неассоциативные кольца (пункт 6 примера 4.1.1: здесь , ). Ассоциативные кольца делятся на кольца с единицей (есть нейтральный элемент относительно умножения) и без единицы , коммутативные (операция умножения коммутативна) и некоммутативные .

Теорема 4.1.1. Пусть (K , +, ) – ассоциативное кольцо с единицей. Тогда множество K * обратимых относительно умножения элементов кольца K – мультипликативная группа.

Проверим выполнение определения группы 3.2.1. Пусть a , b K * . Покажем, что a b K * .  (a b ) –1 = b –1  а –1  K . Действительно,

(a b )  (b –1  а –1) = a  (b b –1)  а –1 = a  1  а –1 = 1,

(b –1  а –1)  (a b ) = b –1  (а –1  a )  b = b –1  1  b = 1,

где а –1 , b –1  K – обратные элементы к a и b соответственно.

1) Умножение в K * ассоциативно, так как K – ассоциативное кольцо.

2) 1 –1 = 1: 1  1 = 1  1  K * , 1 – нейтральный элемент относительно умножения в K * .

3) Для  a K * , а –1  K * , так как (а –1)  a = a  (а –1) = 1
(а –1) –1 = a .

Определение 4.1.3. Множество K * обратимых относительно умножения элементов кольца (K , +, ) называют мультипликативной группой кольца .

Пример 4.1.2. Приведем примеры мультипликативных групп различных колец.

1. Z * = {1, –1}.

2. M n (Q ) * = GL n (Q ), M n (R ) * = GL n (R ), M n (C ) * = GL n (C ).

3. Z /n Z * – множество обратимых классов вычетов, Z /n Z * = { | (k , n ) = 1, 0  k < n }, при n > 1 | Z /n Z * | = (n ), где – функция Эйлера.

4. {0} * = {0}, так как в данном случае 1 = 0.

Определение 4.1.4. Если в ассоциативном кольце (K , +, ) с единицей группа K * = K \{0}, где 0 – нейтральный элемент относительно сложения, то такое кольцо называют телом или алгеброй с делением . Коммутативное тело называется полем .

Из данного определения очевидно, что в теле K *   и 1  K * , значит, 1  0, поэтому минимальное тело, являющееся полем, состоит из двух элементов: 0 и 1.

Пример 4.1.3.

1. (Q , +, ), (R , +, ), (C , +, ) – соответственно числовые поля рациональных, вещественных и комплексных чисел.

2. (Z /p Z , +, ) – конечное поле из p элементов, если p – простое число. Например, (Z /2Z , +, ) – минимальное поле из двух элементов.

3. Некоммутативным телом является тело кватернионов – совокупность кватернионов, то есть выражений вида h = a + bi + cj + dk , где a , b , c , d R , i 2 = = j 2 = k 2 = –1, i j = k = – j i , j k = i = – k j , i k = – j = – k i , с операциями сложения и умножения. Кватернионы складываются и перемножаются почленно с учетом указанных выше формул. Для всякого h  0 обратный кватернион имеет вид:
.

Различают кольца с делителями нуля и кольца без делителей нуля.

Определение 4.1.5. Если в кольце найдутся ненулевые элементы a и b такие, что a b = 0, то их называют делителями нуля , а само кольцо – кольцом с делителями нуля . В противном случае кольцо называется кольцом без делителей нуля .

Пример 4.1.4.

1. Кольца (Z , +, ), (Q , +, ), (R , +, ), (C , +, ) – кольца без делителей нуля.

2. В кольце (V 3 (R ), +, ) каждый отличный от нуля элемент является делителем нуля, поскольку
для всех
V 3 (R ).

3. В кольце матриц M 3 (Z ) примерами делителей нуля являются матрицы
и
, так как A B = O (нулевая матрица).

4. В кольце (Z / n Z , +, ) с составным n = k m , где 1 < k , m < n , классы вычетов и являются делителями нуля, так как .

Ниже приведем основные свойства колец и полей.

называется порядком элемента а. Если такого n не существует, то элемент а называется элементом бесконечного порядка.

Теорема 2.7 (малая теорема Ферма). Если a G и G конечная группа, то a |G| =e .

Примем без доказательства.

Напомним, что каждая группа G, ° является алгеброй с одной бинарной операцией, для которой выполняются три условия, т.е. указанные аксиомы группы.

Подмножество G 1 множества G с той же операцией, что и в группе, называется подгруппой, если G 1 , ° является группой.

Можно доказать, что непустое подмножество G 1 множества G является подгруппой группы G, ° тогда и только тогда, когда множество G 1 вместе с любыми элементами а и b содержит элемент а° b -1 .

Можно доказать следующую теорему.

Теорема 2.8 . Подгруппа циклической группы является циклической.

§ 7. Алгебра с двумя операциями. Кольцо

Рассмотрим алгебры с двумя бинарными операциями.

Кольцом называется непустое множество R , на котором введены две бинарные операции + и ° , называемые сложением и умножением такие, что:

1) R; + является абелевой группой;

2) умножение ассоциативно, т.е. для a,b,c R: (a ° b ° ) ° c=a ° (b ° c) ;

3) умножение дистрибутивно относительно сложения, т.е. для

a,b,c R: a° (b+c)=(a° b)+(а ° c) и (а +b)° c= (a° c)+(b° c).

Кольцо называется коммутативным, если для a,b R: a ° b=b ° a .

Кольцо записываем как R; +, ° .

Так как R является абелевой (коммутативной) группой относительно сложения, то она имеет аддитивную единицу, которую обозначают через 0 или θ и называют нулем. Аддитивную обратную для a R обозначают через -а. При этом в любом кольце R имеем:

0 +x=x+ 0 =x, x+(-x)=(-x)+x=0 , -(-x)=x.

Тогда получаем, что

x° y=x° (y+ 0 )=x° y+ x° 0 x° 0 =0 для х R; x° y=(х + 0 )° y=x° y+ 0 ° y 0 ° y=0 для y R.

Итак, мы показали, что для х R: x ° 0 = 0° х = 0. Однако из равенства x ° y=0 не следует, что х= 0 или у= 0. Покажем это на примере.

Пример. Рассмотрим множество непрерывных на отрезке функций. Введем для этих функций обычные операции сложения и умножения: f(x)+ ϕ (x) и f(x)· ϕ (x) . Как легко видеть, получим кольцо, которое обозначается C . Рассмотрим функцию f(x) и ϕ (x) , изображенные на рис. 2.3. Тогда получим, что f(x) ≡ / 0 и ϕ (x) ≡ / 0, но f(x)· ϕ (x) ≡0.

Мы доказали, что произведение равно нулю, если равен нулю один из множителей: a ° 0= 0 для a R и на примере показали, что может быть, что a ° b= 0 для a ≠ 0 и b ≠ 0.

Если в кольце R имеем, что a ° b= 0, то а называется левым, а b правым делителями нуля. Элемент 0 считаем тривиальным делителем нуля.

f(x)·ϕ(x)≡0

ϕ (x)

Коммутативное кольцо без делителей нуля, отличных от тривиального делителя нуля, называют целостным кольцом или областью целостности.

Легко видеть, что

0 =x° (y+(-y))=x° y+x° (-y), 0 =(x+(-x))° y=x° y+(-x)° y

и поэтому x ° (-y)=(-x) ° y является обратным элементом для элемента х° у, т.е.

х ° (-у ) = (-х )° у = -(х ° у ).

Аналогично можно показать, что (- х) ° (- у) = х° у.

§ 8. Кольцо с единицей

Если в кольце R существует единица относительно умножения, то эту мультипликативную единицу обозначают через 1.

Легко доказать, что мультипликативная единица (как и аддитивная) единственна. Мультипликативную обратную для a R (обратную по умножению) будем обозначать через а-1 .

Теорема 2.9 . Элементы 0 и 1 являются различными элементами ненулевого кольца R .

Доказательство. Пусть R содержит не только 0. Тогда для a ≠ 0 имеем а° 0= 0 и а° 1= а ≠ 0, откуда следует, что 0 ≠ 1, ибо если бы 0= 1, то и их произведения на а совпадали бы.

Теорема 2.10 . Аддитивная единица, т.е. 0, не имеет мультипликативного обратного.

Доказательство. а° 0= 0° а= 0 ≠ 1 для а R . Таким образом, ненулевое кольцо никогда не будет группой относительно умножения.

Характеристикой кольца R называют наименьшее натуральное число k

такое, что a + a + ... + a = 0 для всех a R . Характеристика кольца

k − раз

записывается k=char R . Если указанного числа k не существует, то полагаем char R= 0.

Пусть Z – множество всех целых чисел;

Q – множество всех рациональных чисел;

R – множество всех действительных чисел; С – множество всех комплексных чисел.

Каждое из множеств Z, Q, R, C с обычными операциями сложения и умножения является кольцом. Эти кольца являются коммутативными, с мультипликативной единицей, равной числу 1. Эти кольца не имеют делителей нуля, следовательно, являются областями целостности. Характеристика каждого из этих колец равна нулю.

Кольцо непрерывных на функций (кольцо C ) тоже является кольцом с мультипликативной единицей, которая совпадает с функцией, тождественно равной единице на . Это кольцо имеет делители нуля, поэтому не является областью целостности и char C= 0.

Рассмотрим ещё один пример. Пусть М - непустое множество и R= 2M - множество всех подмножеств множества М. На R введем две операции: симметрическую разность А+ В= А В (которую назовём сложением) и пересечение (которое назовём умножением). Можно убедиться, что получили

кольцо с единицей; аддитивной единицей этого кольца будет , а мультипликативной единицей кольца будет множество М. Для этого кольца при любом А, А R , имеем: А+ А = А А= . Следовательно, charR = 2.

§ 9. Поле

Полем называется коммутативное кольцо, у которого ненулевые элементы образуют коммутативную группу относительно умножения.

Приведем прямое определение поля, перечисляя все аксиомы.

Поле – это множество P с двумя бинарными операциями «+ » и «° », называемыми сложением и умножением, такими, что:

1) сложение ассоциативно: для a, b, c R: (a+b)+c=a+(b+c) ;

2) существует аддитивная единица: 0 P, что для a P: a+0 =0 +a=a;

3) существует обратный элемент по сложению: для a P (-a) P:

(-a)+a=a+(-a)=0;

4) сложение коммутативно: для a, b P: a+b=b+a ;

(аксиомы 1 – 4 означают, что поле есть абелева группа по сложению);

5) умножение ассоциативно: для a, b, c P: a ° (b ° c)=(a ° b) ° c ;

6) существует мультипликативная единица: 1 P , что для a P:

1 ° a=a° 1 =a;

7) для любого ненулевого элемента (a ≠ 0) существует обратный элемент по умножению: для a P, a ≠ 0, a -1 P: a -1 ° a = a ° a -1 = 1;

8) умножение коммутативно: для a,b P: a ° b=b ° a ;

(аксиомы 5 – 8 означают, что поле без нулевого элемента образует коммутативную группу по умножению);

9) умножение дистрибутивно относительно сложения: для a, b, c P: a° (b+c)=(a° b)+(a° c), (b+c) ° a=(b° a)+(c° a).

Примеры полей:

1) R;+, - поле вещественных чисел;

2) Q;+, - поле рациональных чисел;

3) C;+, - поле комплексных чисел;

4) пусть Р 2 ={0,1}. Определим, что 1 +2 0=0 +2 1=1,

1 +2 1=0, 0 +2 0=0, 1×0=0×1=0×0=0, 1×1=1. Тогда F 2 = P 2 ;+ 2 , является полем и называется двоичной арифметикой.

Теорема 2.11 . Если а ≠ 0, то в поле единственным образом разрешимо уравнение а° х=b .

Доказательство . a° x=b a-1 ° (a° x)=a-1 ° b (a-1 ° a)° x=a-1 ° b

Определение 2.5. Кольцом называют алгебру

R = (R, +, ⋅,0 , 1 ),

сигнатура которой состоит из двух бинарных и двух нульарных операций, причем для любых a, b, c ∈ R выполняются равенства:

  1. a+(b+c) = (a+b)+c;
  2. a+b = b+a;
  3. а + 0 = a;
  4. для каждого а ∈ R существует элемент а", такой, что a+a" = 0
  5. а-(b-с) = (а-b)-с;
  6. а ⋅ 1 = 1 ⋅ а = а;
  7. а⋅(b + с) =а⋅b + а⋅с, (b + с) ⋅ а = b⋅ а + с⋅а.

Операцию + называют сложением кольца , операцию умножением кольца , элемент 0 - нулем кольца , элемент 1 - единицей кольца .

Равенства 1-7, указанные в определении, называют аксиомами кольца . Рассмотрим эти равенства с точки зрения понятия группы и моноида .

Аксиомы кольца 1-4 означают, что алгебра (R, +, 0 ), сигнатура которой состоит только из операций сложения кольца + и нуля кольца 0 , является абелевой группой . Эту группу называют аддитивной группой кольца R и говорят также, что по сложению кольцо есть коммутативная (абелева) группа.

Аксиомы кольца 5 и 6 показывают, что алгебра (R, ⋅, 1), сигнатура которой включает только умножение кольца ⋅ и еди- единицу кольца 1, есть моноид. Этот моноид называют мультипликативным моноидом кольца R и говорят, что по умножению кольцо есть моноид.

Связь между сложением кольца и умножением кольца устанавливает аксиома 7, согласно которой операция умножения дистрибутивна относительно операции сложения.

Учитывая сказанное выше, отметим, что кольцо - это алгебра с двумя бинарными и двумя нульарными операциями R =(R, +, ⋅,0 , 1 ), такая, что:

  1. алгебра (R, +, 0 ) - коммутативная группа;
  2. алгебра (R, ⋅, 1 ) - моноид;
  3. операция ⋅ (умножения кольца) дистрибутивна относительно операции + (сложения кольца).

Замечание 2.2. В литературе встречается иной состав аксиом кольца, относящихся к умножению. Так, могут отсут- отсутствовать аксиома 6 (в кольце нет 1 ) и аксиома 5 (умножение не ассоциативно). В этом случае выделяют ассоциативные коль- кольца (к аксиомам кольца добавляют требование ассоциативности умножения) и кольца с единицей. В последнем случае добавля- добавляются требования ассоциативности умножения и существования единицы.

Определение 2.6. Кольцо называют коммутативным , если его операция умножения коммутативна.

Пример 2.12. а. Алгебра (ℤ, +, ⋅, 0, 1) есть коммутативное кольцо. Отметим, что алгебра (ℕ 0 , +, ⋅, 0, 1) кольцом не будет, поскольку (ℕ 0 , +) - коммутативный моноид, но не группа.

б. Рассмотрим алгебру ℤ k = ({0,1,..., k - 1}, ⊕ k , ⨀ k , 0,1) (к>1) с операцией ⊕ k сложения по модулю л и ⨀ k (умножения по модулю л). Последняя аналогична операции сложения по модулю л: m ⨀ k n равно остатку от деления на k числа m ⋅ n. Эта алгебра есть коммутативное кольцо, которое называют кольцом вычетов по модулю k.

в. Алгебра (2 A , Δ, ∩, ∅, А) - коммутативное кольцо, что следует из свойств пересечения и симметрической разности множеств.

г. Пример некоммутативного кольца дает множество всех квадратных матриц фиксированного порядка с операциями сложения и умножения матриц. Единицей этого кольца является единичная матрица, а нулем - нулевая.

д. Пусть L - линейное пространство. Рассмотрим множество всех линейных операторов, действующих в этом пространстве.

Напомним, что суммой двух линейных операторов А и В называют оператор А + В , такой, что (А + В ) х = Ах + Вх , х L .

Произведением линейных операторов А и В называют линей- линейный оператор АВ , такой, что (АВ )х = А (Вх ) для любого х L .

Используя свойства указанных операций над линейными операторами, можно показать, что множество всех линейных операторов, действующих в пространстве L , вместе с операциями сложения и умножения операторов образует кольцо. Нулем этого кольца служит нулевой оператор , а единицей - тождественный оператор .

Это кольцо называют кольцом линейных операторов в линейном пространстве L. #

Аксиомы кольца называют также основными тождествами кольца . Тождество кольца - это равенство, ливость которого сохраняется при подстановке вместо фигурирующих в нем переменных любых элементов кольца. Основные тождества постулируются, и из них затем могут быть выведе- выведены как следствия другие тождества. Рассмотрим некоторые из них.

Напомним, что аддитивная группа кольца коммутативна и в ней определена операция вычитания .

Теорема 2.8. В любом кольце выполняются следующие тождества:

  1. 0 ⋅ а = a ⋅ 0 = 0 ;
  2. (-a) ⋅ b = -(a ⋅ b) = a ⋅ (-b);
  3. (a-b) ⋅ c = a ⋅ c - b ⋅ c, c ⋅ (a-b) = c ⋅ a - c ⋅ b.

◀Докажем тождество 0 ⋅ а = 0 . Запишем для произвольного а:

a+0 ⋅ a = 1 ⋅ a + 0 ⋅ a = (1 +0 ) ⋅ a = 1 ⋅ a = a

Итак, а + 0 ⋅ а = а. Последнее равенство можно рассматривать как уравнение в аддитивной группе кольца относительно неизвестного элемента 0 ⋅ а. Так как в аддитивной группе любое уравнение вида а + х = b имеет единственное решение х=b - а, то 0 ⋅ а = а - а = 0 . Тождество а⋅ 0 = 0 доказывается аналогично.

Докажем теперь тождество - (a ⋅ b) = a ⋅ (-b). Имеем

a ⋅ (-b)+a ⋅ b = a ⋅ ((-b) + b) = a ⋅ 0 = 0 ,

откуда а ⋅ (-b) = -(а ⋅ b). Точно так же можно доказать, что (-a) ⋅ b = -(a ⋅ b).

Докажем третью пару тождеств. Рассмотрим первое из них. С учетом доказанного выше имеем

а ⋅ (b - с) = a ⋅ (b+(-c)) = a ⋅ b + a ⋅ (-c) =a ⋅ b - a ⋅ c,

т.е. тождество справедливо. Второе тождество этой пары доказывается аналогично.

Следствие 2.1 . В любом кольце справедливо тождество (-1 ) ⋅ х = x ⋅ (-1 ) = -x.

◀Указанное следствие вытекает из второго тождества теоремы 2.8 при a = 1 и b = x.

Первые два тождества из доказанных в теореме 2.8 выражают свойство, называемое аннулирующим свойством нуля в кольце. Третья же пара тождеств указанной теоремы выражает свойство дистрибутивности операции умножения кольца относительно операции вычитания. Таким образом, производя вычисления в любом кольце, можно раскрывать скобки и менять знаки так же, как и при сложении, вычитании и умножении действительных чисел.

Ненулевые элементы а и b кольца R называют делителями нуля , если а ⋅ b = 0 или b ⋅ а = 0 . Пример кольца с делителем нуля дает любое кольцо вычетов по модулю k, если k - составное число. В этом случае произведение по модулю k любых тип, дающих при обычном перемножении число, кратное k, будет равно нулю. Например, в кольце вычетов по модулю 6 элементы 2 и 3 являются делителями нуля, поскольку 2 ⨀ 6 3 = 0. Другой пример дает кольцо квадратных матриц фиксированного порядка (не меньшего двух). Например, для матриц второго порядка имеем

При отличных от нуля а и b приведенные матрицы являются делителями нуля.

По умножению кольцо является только моноидом. Поставим вопрос: в каких случаях кольцо по умножению будет группой? Прежде всего заметим, что множество всех элементов кольца, в котором 0 1 , не может образовывать группы по умножению, так как нуль не может иметь обратного. Действительно, если предположить, что такой элемент 0" существует, то, с одной стороны, 0 ⋅ 0" = 0" ⋅ 0 = 1 , а с другой - 0 ⋅ 0" = 0" ⋅ 0 = 0 , откуда 0 = 1. Это противоречит условию 0 1 . Таким образом, поставленный выше вопрос можно уточнить так: в каких случаях множество всех ненулевых элементов кольца образует группу по умножению?

Если в кольце имеются делители нуля, то подмножество всех ненулевых элементов кольца не образует группы по умножению уже хотя бы потому, что это подмножество не замкнуто относительно операции умножения, т.е. существуют ненулевые элементы, произведение которых равно нулю.

Кольцо, в котором множество всех ненулевых элементов по умножению образует группу, называют телом , коммутативное тело - полем , а группу ненулевых элементов тела (поля) по умножению - мультипликативной группой этого тела (поля ). Согласно определению, поле есть частный случай кольца, в котором операции обладают дополнительными свойствами. Выпишем все свойства, выполнение которых требуется для операций поля. Их еще называют аксиомами поля .

Поле есть алгебра F = (F, +, ⋅, 0, 1), сигнатура которой состоит из двух бинарных и двух нульарных операций, причем справедливы тождества:

  1. a+(b+c) = (a+b)+c;
  2. a+b = b+a;
  3. a+0 = a;
  4. для каждого а ∈ F существует элемент -а, такой, что a+ (-a) = 0;
  5. a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c;
  6. a ⋅ b = b ⋅ a
  7. a ⋅ 1 = 1 ⋅ a = a
  8. для каждого а ∈ F, отличного от 0, существует элемент а -1 , такой, что а ⋅ а -1 = 1;
  9. a ⋅ (b+c) = a ⋅ b + a ⋅ c.

Пример 2.13. а. Алгебра (ℚ, +, ⋅, 0, 1) есть поле, называемое полем рациональных чисел .

б. Алгебры (ℝ , +, ⋅, 0, 1) и (ℂ, +, ⋅, 0, 1) есть поля, называемые полями действительных и комплексных чисел соответственно.

в. Примером тела, не являющегося полем, может служить алгебра кватернионов . #

Итак, мы видим, что известным законам сложения и умножения чисел соответствуют аксиомы поля. Занимаясь числовыми расчетами, мы „работаем в полях", а именно имеем дело преимущественно с полями рациональных и вещественных чисел, иногда „переселяемся" в поле комплексных чисел.